29 research outputs found

    TRIZ based Interface Conflict Resolving Strategies for Modular Product Architectures

    Get PDF
    In product development, the chosen product architecture often possesses characteristics of both modular and integral design. Within a modular architecture, a Function-Behavior-Structure (FBS) model has been applied to describe modules and their interfaces. To resolve emerging interface conflicts, several strategies based on both modular and integral action have been formulated. The strategies encompass TRIZ methods, as they focus strongly on product innovation. The purpose of the presented study is to combine TRIZ techniques and FBS modeling while trying to solve interface conflicts at a low level of abstraction. The interface conflict resolving strategies have been applied on an industrial case study successfull

    Domain Integration and Cost Reduction in Electronic Product Design: a case study

    Get PDF
    This publication discusses domain integration of various engineering disciplines as an effective methodology to design new, innovative products or to upgrade existing ones. A case study illustrates how this approach is applied to the design process of a high performance electronic product. Thanks to newly developed cooling technologies, fewer constraints are put on the location of heat dissipating components with respect to their heat exchanger. This allows for more overall design flexibility, which can result in a more integrated product design with advantages in terms of performance, volume, weight and production efficienc

    Porosity testing methods for the quality assessment of selective laser melted parts

    Get PDF
    This study focuses on the comparison of porosity testing methods for the quality assessment of selective laser melted parts. Porosity is regarded as important quality indicator in metal additive manufacturing. Various destructive and non-destructive testing methods are compared, ranging from global to local observation techniques and from quick low-cost to expensive time-consuming analyses. Forty test specimens were produced using five varying control factors. The experimental results show that Archimedes and CT methods compare well, Archimedes can be deployed to inspect parts in small series and CT pre- and post-cut analysis show that post-cut porosity results are systematically higher

    Pulsed mode selective laser melting of porous structures: Structural and thermophysical characterization

    Get PDF
    In this paper, the potential of selective laser melting (SLM) of stainless steel CL 20ES powder was investigated with a focus on controlled fabrication of porous structures with strongly reduced pore sizes, i.e. feature sizes significantly below conventional minimum SLM feature sizes. By controlling laser scan properties interacting with the powder bed directly, porous structures can be generated by selectively sintering powder particles. A wide range of porous samples was manufactured following this strategy, aiming to increase porosity while keeping pore sizes low. The effect of process parameters, including laser power and focal point positioning, was evaluated for a fibre laser operated in pulsed wave (PW) emission mode. The first part of this study focuses on characterization of key porous structure properties, i.e., porosity, average mass density, average pore sizes and structures at microscopic scales. The second part deals with the influence of porosity and pore sizes on thermal and fluid properties, i.e., the effective thermal conductivity (ETC) and wettability. We have quantified the directional dependence (build direction plane and scan direction plane) off the structural and thermophysical properties of porous structures. For a range of porosities and pore sizes, we have observed that porosity and surface morphology influence the thermal properties and contact angle of droplets on the printed surface. Thermal conductivity was measured and the associated analysis was compared with available models and correlations in literature. The average thermal conductivity of fabricated porous structures was determined between 6−14 W/m K and found to be a function of porosity. Furthermore, the capillary wicking performance of additively manufactured stainless steel porous structures having an average pore radius from 9 to 23 ÎŒm was determined

    Design for additive manufacturing: Trends, opportunities, considerations, and constraints

    Get PDF
    The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future challenges, and identifies promising directions for research and the exploitation of AM's full potential in industry

    Design for additive manufacturing: trends, opportunities, considerations, and constraints

    Get PDF
    © 2016 CIRP. The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future challenges, and identifies promising directions for research and the exploitation of AM's full potential in industry

    Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts

    Get PDF
    Wire and arc additive manufacturing (WAAM) has proven that it can produce medium to large components because of its high-rate deposition and potentially unlimited build size. Like all additive manufacturing (AM) technologies, however, an optimized process planning that provides uniform, defect-free deposition is key for the production of parts. Moreover, AM, particularly WAAM, is no longer just a prototyping technology, and most of today's attention is on its transformation to a viable and cost-effective production. With this transformation, a number of issues need to be addressed, including the accuracy and effectiveness of the manufactured components. Therefore, the emphasis should be on dimensional precision and surface finish in WAAM. This paper covers heat input and management concept, related to the resulting shrinkage, deformation, and residual stresses, which is particularly critical. In addition, we focus on process planning including build orientation, slicing, and path planning, as well as the definition of process parameter selection from a single track to multi-track and multilayer, and finally geometric features from a thin-wall to lattice structures with several case studies. Central to addressing component quality and accuracy, we summarize guiding designs and future needs through numerous WAAM-specific issues, which require for manufacturing of complex components
    corecore